Compound Interest Calculator
Summary
Future Value: | $0.00 |
Compound Interest Calculator
The Compound Interest Calculator below can be used to compare or convert the interest rates of different compounding periods. Please use our Interest Calculator to do actual calculations on compound interest.
What is compound interest?
Interest is the cost of using borrowed money, or more specifically, the amount a lender receives for advancing money to a borrower. When paying interest, the borrower will mostly pay a percentage of the principal (the borrowed amount). The concept of interest can be categorized into simple interest or compound interest.
Simple interest refers to interest earned only on the principal, usually denoted as a specified percentage of the principal. To determine an interest payment, simply multiply principal by the interest rate and the number of periods for which the loan remains active. For example, if one person borrowed $100 from a bank at a simple interest rate of 10% per year for two years, at the end of the two years, the interest would come out to:
$100 × 10% × 2 years = $20
Simple interest is rarely used in the real world. Compound interest is widely used instead. Compound interest is interest earned on both the principal and on the accumulated interest. For example, if one person borrowed $100 from a bank at a compound interest rate of 10% per year for two years, at the end of the first year, the interest would amount to:
$100 × 10% × 1 year = $10
At the end of the first year, the loan’s balance is principal plus interest, or $100 + $10, which equals $110. The compound interest of the second year is calculated based on the balance of $110 instead of the principal of $100. Thus, the interest of the second year would come out to:
$110 × 10% × 1 year = $11
The total compound interest after 2 years is $10 + $11 = $21 versus $20 for the simple interest.
Because lenders earn interest on interest, earnings compound over time like an exponentially growing snowball. Therefore, compound interest can financially reward lenders generously over time. The longer the interest compounds for any investment, the greater the growth.
As a simple example, a young man at age 20 invested $1,000 into the stock market at a 10% annual return rate, the S&P 500’s average rate of return since the 1920s. At the age of 65, when he retires, the fund will grow to $72,890, or approximately 73 times the initial investment!
While compound interest grows wealth effectively, it can also work against debtholders. This is why one can also describe compound interest as a double-edged sword. Putting off or prolonging outstanding debt can dramatically increase the total interest owed.
Different compounding frequencies
Interest can compound on any given frequency schedule but will typically compound annually or monthly. Compounding frequencies impact the interest owed on a loan. For example, a loan with a 10% interest rate compounding semi-annually has an interest rate of 10% / 2, or 5% every half a year. For every $100 borrowed, the interest of the first half of the year comes out to:
$100 × 5% = $5
For the second half of the year, the interest rises to:
($100 + $5) × 5% = $5.25
The total interest is $5 + $5.25 = $10.25. Therefore, a 10% interest rate compounding semi-annually is equivalent to a 10.25% interest rate compounding annually.
The interest rates of savings accounts and Certificate of Deposits (CD) tend to compound annually. Mortgage loans, home equity loans, and credit card accounts usually compound monthly. Also, an interest rate compounded more frequently tends to appear lower. For this reason, lenders often like to present interest rates compounded monthly instead of annually. For example, a 6% mortgage interest rate amounts to a monthly 0.5% interest rate. However, after compounding monthly, interest totals 6.17% compounded annually.
Our compound interest calculator above accommodates the conversion between daily, bi-weekly, semi-monthly, monthly, quarterly, semi-annual, annual, and continuous (meaning an infinite number of periods) compounding frequencies.
Compound interest formulas
The calculation of compound interest can involve complicated formulas. Our calculator provides a simple solution to address that difficulty. However, those who want a deeper understanding of how the calculations work can refer to the formulas below:
Basic compound interest
The basic formula for compound interest is as follows:
At = A0(1 + r)n
At : amount after time t
r : interest rate
n : number of compounding periods, usually expressed in years
In the following example, a depositor opens a $1,000 savings account. It offers a 6% APY compounded once a year for the next two years. Use the equation above to find the total due at maturity: